Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Pharmacol ; 940: 175475, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: covidwho-2165260

RESUMO

Vascular endothelial dysfunction plays a central role in the most dreadful human diseases, including stroke, tumor metastasis, and the coronavirus disease 2019 (COVID-19). Strong evidence suggests that angiotensin II (Ang II)-induced mitochondrial dysfunction is essential for endothelial dysfunction pathogenesis. However, the precise molecular mechanisms remain obscure. Here, polymerase-interacting protein 2 (Poldip 2) was found in the endothelial mitochondrial matrix and no effects on Poldip 2 and NADPH oxidase 4 (NOX 4) expression treated by Ang II. Interestingly, we first found that Ang II-induced NOX 4 binds with Poldip 2 was dependent on cyclophilin D (CypD). CypD knockdown (KD) significantly inhibited the binding of NOX 4 to Poldip 2, and mitochondrial ROS generation in human umbilical vein endothelial cells (HUVECs). Similar results were also found in cyclosporin A (CsA) treated HUVECs. Our previous study suggested a crosstalk between extracellular regulated protein kinase (ERK) phosphorylation and CypD expression, and gallic acid (GA) inhibited mitochondrial dysfunction in neurons depending on regulating the ERK-CypD axis. Here, we confirmed that GA inhibited Ang II-induced NOX 4 activation and mitochondrial dysfunction via ERK/CypD/NOX 4/Poldip 2 pathway, which provide novel mechanistic insight into CypD act as a key regulator of the NOX 4/Poldip 2 axis in Ang II-induced endothelial mitochondrial dysfunction and GA might be beneficial in the treatment of wide variety of diseases, such as COVID-19, which is worthy further research.


Assuntos
COVID-19 , Doenças Vasculares , Humanos , NADPH Oxidase 4/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Peptidil-Prolil Isomerase F/farmacologia , NADPH Oxidases/metabolismo , Estresse Oxidativo , Ácido Gálico/farmacologia , COVID-19/metabolismo , Mitocôndrias , Células Endoteliais da Veia Umbilical Humana
2.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1285962

RESUMO

IgA is the second most abundant antibody present in circulation and is enriched at mucosal surfaces. As such, IgA plays a key role in protection against a variety of mucosal pathogens including viruses. In addition to neutralizing viruses directly, IgA can also stimulate Fc-dependent effector functions via engagement of Fc alpha receptors (Fc-αRI) expressed on the surface of certain immune effector cells. Neutrophils are the most abundant leukocyte, express Fc-αRI, and are often the first to respond to sites of injury and infection. Here, we describe a function for IgA-virus immune complexes (ICs) during viral infections. We show that IgA-virus ICs potentiate NETosis-the programmed cell-death pathway through which neutrophils release neutrophil extracellular traps (NETs). Mechanistically, IgA-virus ICs potentiated a suicidal NETosis pathway via engagement of Fc-αRI on neutrophils through a toll-like receptor-independent, NADPH oxidase complex-dependent pathway. NETs also were capable of trapping and inactivating viruses, consistent with an antiviral function.


Assuntos
Armadilhas Extracelulares/imunologia , Imunoglobulina A/imunologia , Neutrófilos/imunologia , Viroses/imunologia , Complexo Antígeno-Anticorpo/imunologia , Antígenos CD/metabolismo , Armadilhas Extracelulares/virologia , Humanos , Alphainfluenzavirus/imunologia , NADPH Oxidases/metabolismo , Neutrófilos/patologia , Neutrófilos/virologia , Receptores Fc/metabolismo , SARS-CoV-2/imunologia , Transdução de Sinais , Vírion
3.
Vascul Pharmacol ; 139: 106879, 2021 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1243242

RESUMO

Toll-like receptor 4 (TLR4) contributes to the pathophysiology of diabetes. This happens, at least in part, because TLR4 modulates the enzyme NADPH oxidase, a primary source of ROS in vascular structures. Increased oxidative stress disrupts key vascular signaling mechanisms and drives the progression of diabetes, elevating the likelihood of cardiovascular diseases. Recently, it has been shown that patients with diabetes are also at a higher risk of developing severe coronavirus disease 2019 (COVID-19). Given the importance of the interaction between TLR4 and NADPH oxidase to the disrupted diabetic vascular system, we put forward the hypothesis that TLR4-mediated NADPH oxidase-derived ROS might be a critical mechanism to help explain why this disparity appears in diabetic patients, but unfortunately, conclusive experimental evidence still lacks in the literature. Herein, we focus on discussing the pathological implications of this signaling communication in the diabetic vasculature and exploring this crosstalk in the context of diabetes-associated severe COVID-19.


Assuntos
Vasos Sanguíneos/enzimologia , COVID-19/virologia , Diabetes Mellitus/enzimologia , Angiopatias Diabéticas/enzimologia , NADPH Oxidases/metabolismo , SARS-CoV-2/patogenicidade , Receptor 4 Toll-Like/metabolismo , Animais , Vasos Sanguíneos/fisiopatologia , Vasos Sanguíneos/virologia , COVID-19/enzimologia , COVID-19/fisiopatologia , Diabetes Mellitus/fisiopatologia , Angiopatias Diabéticas/fisiopatologia , Ativação Enzimática , Interações Hospedeiro-Patógeno , Humanos , Estresse Oxidativo , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Biochemistry (Mosc) ; 85(10): 1178-1190, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-901275

RESUMO

NETosis is a program for formation of neutrophil extracellular traps (NETs), which consist of modified chromatin decorated with bactericidal proteins from granules and cytoplasm. Various pathogens, antibodies and immune complexes, cytokines, microcrystals, and other physiological stimuli can cause NETosis. Induction of NETosis depends on reactive oxygen species (ROS), the main source of which is NADPH oxidase. Activation of NADPH oxidase depends on increase in the concentration of Ca2+ in the cytoplasm and in some cases on the generation of ROS in mitochondria. NETosis includes release of the granule components into the cytosol, modification of histones leading to chromatin decondensation, destruction of the nuclear envelope, as well as formation of pores in the plasma membrane. In this review, basic mechanisms of NETosis, as well as its role in the pathogenesis of some diseases including COVID-19 are discussed.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , SARS-CoV-2 , COVID-19/virologia , Cálcio/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/imunologia , Estresse Oxidativo/imunologia , Espécies Reativas de Oxigênio/metabolismo
5.
J Pineal Res ; 69(3): e12676, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: covidwho-620325

RESUMO

Melatonin is a chronobiotic hormone, which can regulate human diseases like cancer, atherosclerosis, respiratory disorders, and microbial infections by regulating redox system. Melatonin exhibits innate immunomodulation by communicating with immune system and influencing neutrophils to fight infections and inflammation. However, sustaining redox homeostasis and reactive oxygen species (ROS) generation in neutrophils are critical during chemotaxis, oxidative burst, phagocytosis, and neutrophil extracellular trap (NET) formation. Therefore, endogenous antioxidant glutathione (GSH) redox cycle is highly vital in regulating neutrophil functions. Reduced intracellular GSH levels and glutathione reductase (GR) activity in the neutrophils during clinical conditions like autoimmune disorders, neurological disorders, diabetes, and microbial infections lead to dysfunctional neutrophils. Therefore, we hypothesized that redox modulators like melatonin can protect neutrophil health and functions under GSH and GR activity-deficient conditions. We demonstrate the dual role of melatonin, wherein it protects neutrophils from oxidative stress-induced apoptosis by reducing ROS generation; in contrast, it restores neutrophil functions like phagocytosis, degranulation, and NETosis in GSH and GR activity-deficient neutrophils by regulating ROS levels both in vitro and in vivo. Melatonin mitigates LPS-induced neutrophil dysfunctions by rejuvenating GSH redox system, specifically GR activity by acting as a parallel redox system. Our results indicate that melatonin could be a potential auxiliary therapy to treat immune dysfunction and microbial infections, including virus, under chronic disease conditions by restoring neutrophil functions. Further, melatonin could be a promising immune system booster to fight unprecedented pandemics like the current COVID-19. However, further studies are indispensable to address the clinical usage of melatonin.


Assuntos
Antioxidantes/uso terapêutico , Glutationa/metabolismo , Melatonina/uso terapêutico , Neutrófilos/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Feminino , Glutationa Redutase/metabolismo , Humanos , Masculino , Melatonina/farmacologia , Camundongos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tratamento Farmacológico da COVID-19
6.
Open Heart ; 7(1)2020 06.
Artigo em Inglês | MEDLINE | ID: covidwho-595177

RESUMO

The high rate of thrombotic complications associated with COVID-19 seems likely to reflect viral infection of vascular endothelial cells, which express the ACE2 protein that enables SARS-CoV-2 to invade cells. Various proinflammatory stimuli can promote thrombosis by inducing luminal endothelial expression of tissue factor (TF), which interacts with circulating coagulation factor VII to trigger extrinsic coagulation. The signalling mechanism whereby these stimuli evoke TF expression entails activation of NADPH oxidase, upstream from activation of the NF-kappaB transcription factor that drives the induced transcription of the TF gene. When single-stranded RNA viruses are taken up into cellular endosomes, they stimulate endosomal formation and activation of NADPH oxidase complexes via RNA-responsive toll-like receptor 7. It is therefore proposed that SARS-CoV-2 infection of endothelial cells evokes the expression of TF which is contingent on endosomal NADPH oxidase activation. If this hypothesis is correct, hydroxychloroquine, spirulina (more specifically, its chromophore phycocyanobilin) and high-dose glycine may have practical potential for mitigating the elevated thrombotic risk associated with COVID-19.


Assuntos
Betacoronavirus/patogenicidade , Coagulação Sanguínea , Infecções por Coronavirus/virologia , Endossomos/virologia , Células Endoteliais/virologia , NADPH Oxidases/metabolismo , Pneumonia Viral/virologia , Tromboplastina/metabolismo , Trombose/virologia , Animais , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/enzimologia , Endossomos/efeitos dos fármacos , Endossomos/enzimologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática , Fibrinolíticos/uso terapêutico , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/enzimologia , SARS-CoV-2 , Transdução de Sinais , Trombose/sangue , Trombose/enzimologia , Trombose/prevenção & controle , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA